首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284682篇
  免费   21432篇
  国内免费   10794篇
工业技术   316908篇
  2024年   493篇
  2023年   4371篇
  2022年   6418篇
  2021年   10820篇
  2020年   8284篇
  2019年   7024篇
  2018年   7997篇
  2017年   9058篇
  2016年   7884篇
  2015年   11074篇
  2014年   13685篇
  2013年   16369篇
  2012年   17752篇
  2011年   19388篇
  2010年   16742篇
  2009年   15894篇
  2008年   15435篇
  2007年   15082篇
  2006年   15972篇
  2005年   14146篇
  2004年   9045篇
  2003年   7902篇
  2002年   7304篇
  2001年   6485篇
  2000年   7100篇
  1999年   8465篇
  1998年   6735篇
  1997年   5720篇
  1996年   5366篇
  1995年   4465篇
  1994年   3718篇
  1993年   2599篇
  1992年   2109篇
  1991年   1574篇
  1990年   1142篇
  1989年   909篇
  1988年   737篇
  1987年   486篇
  1986年   357篇
  1985年   234篇
  1984年   161篇
  1983年   104篇
  1982年   125篇
  1981年   83篇
  1980年   67篇
  1979年   24篇
  1978年   2篇
  1965年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
A novel CdS/CaFe2O4 (CS/CFO) heterogeneous p-n junction was created by thermal deposition of CaFe2O4 nanoparticles on CdS rods. The CS/CFO hetero-structured photocatalysts exhibited increasingly efficient visible light harvesting compared to the bare CdS. The CS/CFO composites also presented higher photocurrent and slower decay of photoluminescence, suggesting a better separation of the photo-generated electrons and holes. The photocatalytic H2 evolution quantity on the optimized CS/CFO composite from water in the presence of ethanol was up to 2200 μmol after 3-h visible light illumination, which is more than twice that of the pristine CdS. The chemical interaction between CdS and CaFe2O4 was confirmed by the shifts in the XPS peaks, which made it possible for the charge carriers to transfer across the p-n junction interface. This research highlights the importance of forming an interfacial p-n heterojunction between two semiconductors for efficient charge separation and improved photocatalytic performance.  相似文献   
52.
Developing high-performance visible-to-UV photon upconversion systems based on triplet–triplet annihilation photon upconversion (TTA-UC) is highly desired, as it provides a potential approach for UV light-induced photosynthesis and photocatalysis. However, the quantum yield and spectral range of visible-to-UV TTA-UC based on nanocrystals (NCs) are still far from satisfactory. Here, three different sized CdS NCs are systematically investigated with triplet energy transfer to four mediators and four annihilators, thus substantially expanding the available materials for visible-to-UV TTA-UC. By improving the quality of CdS NCs, introducing the mediator via a direct mixing fashion, and matching the energy levels, a high TTA-UC quantum yield of 10.4% (out of a 50% maximum) is achieved in one case, which represents a record performance in TTA-UC based on NCs without doping. In another case, TTA-UC photons approaching 4 eV are observed, which is on par with the highest energies observed in optimized organic systems. Importantly, the in-depth investigation reveals that the direct mixing approach to introduce the mediator is a key factor that leads to close to unity efficiencies of triplet energy transfer, which ultimately governs the performance of NC-based TTA-UC systems. These findings provide guidelines for the design of high-performance TTA-UC systems toward solar energy harvesting.  相似文献   
53.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
54.
Increasing the dielectric loss capacity plays an important role in enhancing the electromagnetic absorption performance of materials. It remains a challenge to simultaneously introduce multiple types of dielectric losses in the material. In this work, we show that the atomic and interfacial dipole polarizations can be simultaneously enhanced by substituting N species into both carbon coating layers and bulk TiC lattices of a core-shell TiC@C material. Additionally, substitution of N species results more exposed TiC(111) facets and refines the TiC grain sizes in the bulk material, which is beneficial for enhancing the scattering of the external electromagnetic waves. The maximum reflection loss of the N substituted TiC@C material is measured as ?47.1 dB with an effective absorbing bandwidth of 4.83 GHz at 1.9 mm, which illustrates a valuable way to further tuning the electromagnetic absorption performance of this type of materials.  相似文献   
55.
56.
A new aqueous slurry-based laminated object manufacturing process for porous ceramics is proposed: firstly, an organic mesh sheet is pre-paved as a pore-forming template before slurry layer scraping; secondly, the 2D pattern is built with laser outline cutting of the dried mesh–ceramic composite layer; finally, the pore structure is formed after degreasing and sintering. Alumina parts with porosities of 51.5 %, round hole diameters of 80 ± 5 μm were fabricated using 70 wt. % solid content slurry and 100 mesh nylon net. Using an organic mesh as the framework and template not only reduces the risk of damage of the green body but also ensures the regularity, uniformity and connectivity of the micron scaled pore network. The layer-by-layer drying method avoids the delamination phenomenon and improves the paving density. The new method can realize the flexible design of the pore structure by using various organic mesh templates.  相似文献   
57.
核桃不仅营养价值极高,而且核桃壳的药用价值也非常高,国内小企业和家庭在核桃硬壳脱壳加工环节,一般采用人工破壳取仁的方式,这种方式劳动强度大,人工成本高且不卫生;针对这个问题设计了一款小型的硬壳脱壳,壳仁分离分选的机器来提高生产效率,减少成本,提高收入。  相似文献   
58.
Neoantigen vaccines and adoptive dendritic cell (DC) transfer are major clinical approaches to initiate personalized immunity in cancer patients. However, the immunization efficacy is largely limited by the in vivo trajectory including neoantigens’ access to resident DCs and DCs’ access to lymph nodes (LNs). Herein, an innovative strategy is proposed to improve personalized immunization through neoantigen-loaded nanovaccines synergized with adoptive DC transfer. It is found that it enables selective delivery of neoantigens to resident DCs and macrophages by coating cancer cell membranes onto neoantigen-loaded nanoparticles. In addition, the nanovaccines promote the secretion of chemokine C-C motif ligand 2 (CCL2), CCL3, and C-X-C motif ligand 10 from macrophages, thus potentiating the access of transferred DCs to LNs. This immunization strategy enables coordinated delivery of identified neoantigens and autologous tumor lysate-derived undefined antigens, leading to initiation of antitumor T cell immunity in a personalized manner. It significantly inhibits tumor growth in prophylactic and established mouse tumor models. The findings provide a new vision for potentiating adoptive cell transfer by nanovaccines, which may open the door to a transformative possibility for improving personalized immunization.  相似文献   
59.
Sheng  Mingming  Yang  Rongkun  Gong  Hongyu  Zhang  Yujun  Lin  Xiao  Jing  Jie 《Journal of Materials Science》2022,57(10):5805-5824
Journal of Materials Science - With the extensive use of high-power electronic appliances, polymer-based thermal insulation composites with excellent thermal properties are utilized in the field of...  相似文献   
60.
A novel carbon/m-HNTs composite aerogel was synthesized by introducing the modified halloysite nanotubes (m-HNTs) into phenolic (PR) aerogels through chemical grafting, followed with carbonization treatment. In order to explore the best proportion of HNTs to phenolic, the micromorphology of PR/m-HNTs were investigated by SEM before carbonization, confirming 10 wt% of m-HNTs is most beneficial to the porous network of aerogels. The interaction between PR and HNTs was studied by FTIR spectra, and microstructure evolution of the target product-carbon/m-HNTs composite aerogel were illustrated by SEM and TEM techniques. SEM patterns indicated that the carbon/m-HNTs aerogels maintain a stable porous structure at 1000 °C (carbonization temperature), while a ~20 nm carbon layer was formed around m-HNTs generating an integral unit through TEM analysis. Specific surface area and pore size distribution of composite aerogels were analyzed based on mercury intrusion porosimetry and N2 adsorption–desorption method, the obtained results stayed around 500 m2g?1 and 1.00 cm3g?1 (pore volume) without significant discrepancy, compared with pure aerogel, showing the uniformity of pore size. The weight loss rate (26.76%) decreased greatly compared with pure aerogel, at the same time, the best volumetric shrinkage rate was only 30.83%, contributed by the existence of HNTs supporting the neighbor structure to avoid over-shrinking. The highest compressive strength reached to 4.43 MPa, while the data of pure aerogel was only 1.52 MPa, demonstrating the excellent mechanical property of carbon/m-HNTs aerogels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号